Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Front Cardiovasc Med ; 9: 901902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865389

RESUMO

Background: Cardiac computed tomography (CCT) based computational fluid dynamics (CFD) allows to assess intracardiac flow features, which are hypothesized as an early predictor for heart diseases and may support treatment decisions. However, the understanding of intracardiac flow is challenging due to high variability in heart shapes and contractility. Using statistical shape modeling (SSM) in combination with CFD facilitates an intracardiac flow analysis. The aim of this study is to prove the usability of a new approach to describe various cohorts. Materials and Methods: CCT data of 125 patients (mean age: 60.6 ± 10.0 years, 16.8% woman) were used to generate SSMs representing aneurysmatic and non-aneurysmatic left ventricles (LVs). Using SSMs, seven group-averaged LV shapes and contraction fields were generated: four representing patients with and without aneurysms and with mild or severe mitral regurgitation (MR), and three distinguishing aneurysmatic patients with true, intermediate aneurysms, and globally hypokinetic LVs. End-diastolic LV volumes of the groups varied between 258 and 347 ml, whereas ejection fractions varied between 21 and 26%. MR degrees varied from 1.0 to 2.5. Prescribed motion CFD was used to simulate intracardiac flow, which was analyzed regarding large-scale flow features, kinetic energy, washout, and pressure gradients. Results: SSMs of aneurysmatic and non-aneurysmatic LVs were generated. Differences in shapes and contractility were found in the first three shape modes. Ninety percent of the cumulative shape variance is described with approximately 30 modes. A comparison of hemodynamics between all groups found shape-, contractility- and MR-dependent differences. Disturbed blood washout in the apex region was found in the aneurysmatic cases. With increasing MR, the diastolic jet becomes less coherent, whereas energy dissipation increases by decreasing kinetic energy. The poorest blood washout was found for the globally hypokinetic group, whereas the weakest blood washout in the apex region was found for the true aneurysm group. Conclusion: The proposed CCT-based analysis of hemodynamics combining CFD with SSM seems promising to facilitate the analysis of intracardiac flow, thus increasing the value of CCT for diagnostic and treatment decisions. With further enhancement of the computational approach, the methodology has the potential to be embedded in clinical routine workflows and support clinicians.

2.
Med Image Anal ; 73: 102166, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34340104

RESUMO

Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support systems for diagnosis, surgery planning, and population-based analysis of spine and bone health. However, designing automated algorithms for spine processing is challenging predominantly due to considerable variations in anatomy and acquisition protocols and due to a severe shortage of publicly available data. Addressing these limitations, the Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020, with a call for algorithms tackling the labelling and segmentation of vertebrae. Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel level by a human-machine hybrid algorithm (https://osf.io/nqjyw/, https://osf.io/t98fz/). A total of 25 algorithms were benchmarked on these datasets. In this work, we present the results of this evaluation and further investigate the performance variation at the vertebra level, scan level, and different fields of view. We also evaluate the generalisability of the approaches to an implicit domain shift in data by evaluating the top-performing algorithms of one challenge iteration on data from the other iteration. The principal takeaway from VerSe: the performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly identify vertebrae in cases of rare anatomical variations. The VerSe content and code can be accessed at: https://github.com/anjany/verse.


Assuntos
Benchmarking , Tomografia Computadorizada por Raios X , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Coluna Vertebral/diagnóstico por imagem
3.
IEEE Trans Med Imaging ; 40(9): 2329-2342, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33939608

RESUMO

The aim of this paper is to provide a comprehensive overview of the MICCAI 2020 AutoImplant Challenge. The approaches and publications submitted and accepted within the challenge will be summarized and reported, highlighting common algorithmic trends and algorithmic diversity. Furthermore, the evaluation results will be presented, compared and discussed in regard to the challenge aim: seeking for low cost, fast and fully automated solutions for cranial implant design. Based on feedback from collaborating neurosurgeons, this paper concludes by stating open issues and post-challenge requirements for intra-operative use. The codes can be found at https://github.com/Jianningli/tmi.


Assuntos
Próteses e Implantes , Crânio , Crânio/diagnóstico por imagem , Crânio/cirurgia
4.
Sci Rep ; 10(1): 3755, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111935

RESUMO

This study's objective was the generation of a standardized geometry of the healthy nasal cavity. An average geometry of the healthy nasal cavity was generated using a statistical shape model based on 25 symptom-free subjects. Airflow within the average geometry and these geometries was calculated using fluid simulations. Integral measures of the nasal resistance, wall shear stresses (WSS) and velocities were calculated as well as cross-sectional areas (CSA). Furthermore, individual WSS and static pressure distributions were mapped onto the average geometry. The average geometry featured an overall more regular shape that resulted in less resistance, reduced WSS and velocities compared to the median of the 25 geometries. Spatial distributions of WSS and pressure of the average geometry agreed well compared to the average distributions of all individual geometries. The minimal CSA of the average geometry was larger than the median of all individual geometries (83.4 vs. 74.7 mm²). The airflow observed within the average geometry of the healthy nasal cavity did not equal the average airflow of the individual geometries. While differences observed for integral measures were notable, the calculated values for the average geometry lay within the distributions of the individual parameters. Spatially resolved parameters differed less prominently.


Assuntos
Algoritmos , Modelos Biológicos , Cavidade Nasal , Tomografia Computadorizada por Raios X , Trabalho Respiratório/fisiologia , Adulto , Feminino , Humanos , Masculino , Cavidade Nasal/diagnóstico por imagem , Cavidade Nasal/fisiologia , Estudos Retrospectivos
5.
Front Surg ; 6: 56, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632980

RESUMO

The prevailing philosophy in oncologic neurosurgery, has shifted from maximally invasive resection to the preservation of neurologic function. The foundation of safe surgery is the multifaceted visualization of the target region and the surrounding eloquent tissue. Recent advancements in pre-operative and intraoperative visualization modalities have changed the face of modern neurosurgery. Metabolic and functional data can be integrated into intraoperative guidance software, and fluorescent dyes under dedicated filters can potentially visualize patterns of blood flow and better define tumor borders or isolated tumor foci. High definition endoscopes enable the depiction of tiny vessels and tumor extension to the ventricles or skull base. Fluorescein sodium-based confocal endomicroscopy, which is under scientific evaluation, may further enhance the neurosurgical armamentarium. We aim to present our institutional workup of combining different neuroimaging modalities for surgical neuro-oncological procedures. This institutional algorithm (IA) was the basis of the recent publication by Haj et al. describing outcome and survival data of consecutive patients with high grade glioma (HGG) before and after the introduction of our Neuro-Oncology Center.

6.
Adv Exp Med Biol ; 1156: 67-84, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338778

RESUMO

In our chapter we are describing how to reconstruct three-dimensional anatomy from medical image data and how to build Statistical 3D Shape Models out of many such reconstructions yielding a new kind of anatomy that not only allows quantitative analysis of anatomical variation but also a visual exploration and educational visualization. Future digital anatomy atlases will not only show a static (average) anatomy but also its normal or pathological variation in three or even four dimensions, hence, illustrating growth and/or disease progression.Statistical Shape Models (SSMs) are geometric models that describe a collection of semantically similar objects in a very compact way. SSMs represent an average shape of many three-dimensional objects as well as their variation in shape. The creation of SSMs requires a correspondence mapping, which can be achieved e.g. by parameterization with a respective sampling. If a corresponding parameterization over all shapes can be established, variation between individual shape characteristics can be mathematically investigated.We will explain what Statistical Shape Models are and how they are constructed. Extensions of Statistical Shape Models will be motivated for articulated coupled structures. In addition to shape also the appearance of objects will be integrated into the concept. Appearance is a visual feature independent of shape that depends on observers or imaging techniques. Typical appearances are for instance the color and intensity of a visual surface of an object under particular lighting conditions, or measurements of material properties with computed tomography (CT) or magnetic resonance imaging (MRI). A combination of (articulated) Statistical Shape Models with statistical models of appearance lead to articulated Statistical Shape and Appearance Models (a-SSAMs).After giving various examples of SSMs for human organs, skeletal structures, faces, and bodies, we will shortly describe clinical applications where such models have been successfully employed. Statistical Shape Models are the foundation for the analysis of anatomical cohort data, where characteristic shapes are correlated to demographic or epidemiologic data. SSMs consisting of several thousands of objects offer, in combination with statistical methods or machine learning techniques, the possibility to identify characteristic clusters, thus being the foundation for advanced diagnostic disease scoring.


Assuntos
Anatomia , Imageamento Tridimensional , Modelos Anatômicos , Algoritmos , Anatomia/educação , Anatomia/métodos , Diagnóstico por Imagem , Humanos , Modelos Estatísticos
7.
Facial Plast Surg ; 35(1): 3-8, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30759455

RESUMO

Successful functional surgery on the nasal framework requires reliable and comprehensive diagnosis. In this regard, the authors introduce a new methodology: Digital Analysis of Nasal Airflow (diANA). It is based on computational fluid dynamics, a statistical shape model of the healthy nasal cavity and rhinologic expertise. diANA necessitates an anonymized tomographic dataset of the paranasal sinuses including the complete nasal cavity and, when available, clinical information. The principle of diANA is to compare the morphology and the respective airflow of an individual nose with those of a reference. This enables morphometric aberrations and consecutive flow field anomalies to localize and quantify within a patient's nasal cavity. Finally, an elaborated expert opinion with instructive visualizations is provided. Using diANA might support surgeons in decision-making, avoiding unnecessary surgery, gaining more precision, and target-orientation for indicated operations.


Assuntos
Simulação por Computador , Cavidade Nasal/diagnóstico por imagem , Obstrução Nasal/cirurgia , Seios Paranasais/diagnóstico por imagem , Adulto , Tomada de Decisão Clínica , Técnicas de Apoio para a Decisão , Feminino , Humanos , Hidrodinâmica , Modelos Anatômicos , Modelos Estatísticos , Obstrução Nasal/fisiopatologia , Respiração , Tomografia por Raios X
8.
Facial Plast Surg ; 35(1): 9-13, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30759456

RESUMO

Functional surgery on the nasal framework requires referential criteria to objectively assess nasal breathing for indication and follow-up. This motivated us to generate a mean geometry of the nasal cavity based on a statistical shape model. In this study, the authors could demonstrate that the introduced nasal cavity's mean geometry features characteristics of the inner shape and airflow, which are commonly observed in symptom-free subjects. Therefore, the mean geometry might serve as a reference-like model when one considers qualitative aspects. However, to facilitate quantitative considerations and statistical inference, further research is necessary. Additionally, the authors were able to obtain details about the importance of the isthmus nasi and the inferior turbinate for the intranasal airstream.


Assuntos
Cavidade Nasal/anatomia & histologia , Cavidade Nasal/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos , Modelos Estatísticos , Valores de Referência , Respiração , Adulto Jovem
9.
Int J Comput Assist Radiol Surg ; 12(12): 2097-2105, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28664415

RESUMO

PURPOSE: Despite the success of total knee arthroplasty, there continues to be a significant proportion of patients who are dissatisfied. One explanation may be a shape mismatch between pre- and postoperative distal femurs. The purpose of this study was to investigate methods suitable for matching a statistical shape model (SSM) to intraoperatively acquired point cloud data from a surgical navigation system and to validate these against the preoperative magnetic resonance imaging (MRI) data from the same patients. METHODS: A total of 10 patients who underwent navigated total knee arthroplasty also had an MRI scan <2 months preoperatively. The standard surgical protocol was followed which included partial digitization of the distal femur. Two different methods were employed to fit the SSM to the digitized point cloud data, based on (1) iterative closest points and (2) Gaussian mixture models. The available MRI data were manually segmented and the reconstructed three-dimensional surfaces used as ground truth against which the SSM fit was compared. RESULTS: For both approaches, the difference between the SSM-generated femur and the surface generated from MRI segmentation averaged less than 1.7 mm, with maximum errors occurring in less clinically important areas. CONCLUSION: The results demonstrated good correspondence with the distal femoral morphology even in cases of sparse datasets. Application of this technique will allow for measurement of mismatch between pre- and postoperative femurs retrospectively on any case done using the surgical navigation system and could be integrated into the surgical navigation unit to provide real-time feedback.


Assuntos
Artroplastia do Joelho/métodos , Fêmur/diagnóstico por imagem , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Osteoartrite do Joelho/diagnóstico , Cirurgia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Fêmur/cirurgia , Humanos , Período Intraoperatório , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/cirurgia , Período Pós-Operatório
10.
Med Image Anal ; 38: 77-89, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28282642

RESUMO

The reconstruction of an object's shape or surface from a set of 3D points plays an important role in medical image analysis, e.g. in anatomy reconstruction from tomographic measurements or in the process of aligning intra-operative navigation and preoperative planning data. In such scenarios, one usually has to deal with sparse data, which significantly aggravates the problem of reconstruction. However, medical applications often provide contextual information about the 3D point data that allow to incorporate prior knowledge about the shape that is to be reconstructed. To this end, we propose the use of a statistical shape model (SSM) as a prior for surface reconstruction. The SSM is represented by a point distribution model (PDM), which is associated with a surface mesh. Using the shape distribution that is modelled by the PDM, we formulate the problem of surface reconstruction from a probabilistic perspective based on a Gaussian Mixture Model (GMM). In order to do so, the given points are interpreted as samples of the GMM. By using mixture components with anisotropic covariances that are "oriented" according to the surface normals at the PDM points, a surface-based fitting is accomplished. Estimating the parameters of the GMM in a maximum a posteriori manner yields the reconstruction of the surface from the given data points. We compare our method to the extensively used Iterative Closest Points method on several different anatomical datasets/SSMs (brain, femur, tibia, hip, liver) and demonstrate superior accuracy and robustness on sparse data.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Modelos Estatísticos , Encéfalo/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Quadril/diagnóstico por imagem , Humanos , Fígado/diagnóstico por imagem , Distribuição Normal , Tíbia/diagnóstico por imagem
11.
J Neurosurg Pediatr ; 13(3): 319-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24437987

RESUMO

The authors report on the first experiences with the prototype of a surgical tool for cranial remodeling. The device enables the surgeon to transfer statistical information, represented in a model, into the disfigured bone. The model is derived from a currently evolving databank of normal head shapes. Ultimately, the databank will provide a set of standard models covering the statistical range of normal head shapes, thus providing the required template for any standard remodeling procedure as well as customized models for intended overcorrection. To date, this technique has been used in the surgical treatment of 14 infants (age range 6-12 months) with craniosynostosis. In all 14 cases, the designated esthetic result, embodied by the selected model, has been achieved, without morbidity or mortality. Frame-based reconstruction provides the required tools to precisely realize the surgical reproduction of the model shape. It enables the establishment of a self-referring system, feeding back postoperative growth patterns, recorded by 3D follow-up, into the model design.


Assuntos
Craniossinostoses/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Crânio/anormalidades , Crânio/cirurgia , Beleza , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Masculino , Base do Crânio/cirurgia , Resultado do Tratamento
12.
IEEE Trans Vis Comput Graph ; 19(12): 2673-82, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24051834

RESUMO

We propose a novel GPU-based approach to render virtual X-ray projections of deformable tetrahedral meshes. These meshes represent the shape and the internal density distribution of a particular anatomical structure and are derived from statistical shape and intensity models (SSIMs). We apply our method to improve the geometric reconstruction of 3D anatomy (e.g. pelvic bone) from 2D X-ray images. For that purpose, shape and density of a tetrahedral mesh are varied and virtual X-ray projections are generated within an optimization process until the similarity between the computed virtual X-ray and the respective anatomy depicted in a given clinical X-ray is maximized. The OpenGL implementation presented in this work deforms and projects tetrahedral meshes of high resolution (200.000+ tetrahedra) at interactive rates. It generates virtual X-rays that accurately depict the density distribution of an anatomy of interest. Compared to existing methods that accumulate X-ray attenuation in deformable meshes, our novel approach significantly boosts the deformation/projection performance. The proposed projection algorithm scales better with respect to mesh resolution and complexity of the density distribution, and the combined deformation and projection on the GPU scales better with respect to the number of deformation parameters. The gain in performance allows for a larger number of cycles in the optimization process. Consequently, it reduces the risk of being stuck in a local optimum. We believe that our approach will improve treatments in orthopedics, where 3D anatomical information is essential.


Assuntos
Algoritmos , Gráficos por Computador , Imageamento Tridimensional/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Interface Usuário-Computador , Simulação por Computador , Modelos Anatômicos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Med Image Anal ; 17(4): 429-41, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23523192

RESUMO

Deformable surface models are often represented as triangular meshes in image segmentation applications. For a fast and easily regularized deformation onto the target object boundary, the vertices of the mesh are commonly moved along line segments (typically surface normals). However, in case of high mesh curvature, these lines may not intersect with the target boundary at all. Consequently, certain deformations cannot be achieved. We propose omnidirectional displacements for deformable surfaces (ODDS) to overcome this limitation. ODDS allow each vertex to move not only along a line segment but within the volumetric inside of a surrounding sphere, and achieve globally optimal deformations subject to local regularization constraints. However, allowing a ball-shaped instead of a linear range of motion per vertex significantly increases runtime and memory. To alleviate this drawback, we propose a hybrid approach, fastODDS, with improved runtime and reduced memory requirements. Furthermore, fastODDS can also cope with simultaneous segmentation of multiple objects. We show the theoretical benefits of ODDS with experiments on synthetic data, and evaluate ODDS and fastODDS quantitatively on clinical image data of the mandible and the hip bones. There, we assess both the global segmentation accuracy as well as local accuracy in high curvature regions, such as the tip-shaped mandibular coronoid processes and the ridge-shaped acetabular rims of the hip bones.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Modelos Biológicos , Reconhecimento Automatizado de Padrão/métodos , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Med Image Comput Comput Assist Interv ; 15(Pt 1): 609-16, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285602

RESUMO

We propose a fully automatic method for tooth detection and classification in CT or cone-beam CT image data. First we compute an accurate segmentation of the maxilla bone. Based on this segmentation, our method computes a complete and optimal separation of the row of teeth into 16 subregions and classifies the resulting regions as existing or missing teeth. This serves as a prerequisite for further individual tooth segmentation. We show the robustness of our approach by providing extensive validation on 43 clinical head CT scans.


Assuntos
Maxila/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Dente/diagnóstico por imagem , Algoritmos , Artefatos , Osso e Ossos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Modelos Estatísticos , Reconhecimento Automatizado de Padrão/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Reprodutibilidade dos Testes
15.
Artigo em Inglês | MEDLINE | ID: mdl-20827403

RESUMO

The honeybee standard brain (HSB) serves as an interactive tool for relating morphologies of bee brain neurons and provides a reference system for functional and bibliographical properties (http://www.neurobiologie.fu-berlin.de/beebrain/). The ultimate goal is to document not only the morphological network properties of neurons collected from separate brains, but also to establish a graphical user interface for a neuron-related data base. Here, we review the current methods and protocols used to incorporate neuronal reconstructions into the HSB. Our registration protocol consists of two separate steps applied to imaging data from two-channel confocal microscopy scans: (1) The reconstruction of the neuron, facilitated by an automatic extraction of the neuron's skeleton based on threshold segmentation, and (2) the semi-automatic 3D segmentation of the neuropils and their registration with the HSB. The integration of neurons in the HSB is performed by applying the transformation computed in step (2) to the reconstructed neurons of step (1). The most critical issue of this protocol in terms of user interaction time - the segmentation process - is drastically improved by the use of a model-based segmentation process. Furthermore, the underlying statistical shape models (SSM) allow the visualization and analysis of characteristic variations in large sets of bee brain data. The anatomy of neural networks composed of multiple neurons that are registered into the HSB are visualized by depicting the 3D reconstructions together with semantic information with the objective to integrate data from multiple sources (electrophysiology, imaging, immunocytochemistry, molecular biology). Ultimately, this will allow the user to specify cell types and retrieve their morphologies along with physiological characterizations.

16.
Int J Comput Assist Radiol Surg ; 5(2): 111-24, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20033504

RESUMO

PURPOSE: This paper describes an approach for the three-dimensional (3D) shape and pose reconstruction of the human rib cage from few segmented two-dimensional (2D) projection images. Our work is aimed at supporting temporal subtraction techniques of subsequently acquired radiographs by establishing a method for the assessment of pose differences in sequences of chest radiographs of the same patient. METHODS: The reconstruction method is based on a 3D statistical shape model (SSM) of the rib cage, which is adapted to binary 2D projection images of an individual rib cage. To drive the adaptation we minimize a distance measure that quantifies the dissimilarities between 2D projections of the 3D SSM and the projection images of the individual rib cage. We propose different silhouette-based distance measures and evaluate their suitability for the adaptation of the SSM to the projection images. RESULTS: An evaluation was performed on 29 sets of biplanar binary images (posterior-anterior and lateral). Depending on the chosen distance measure, our experiments on the combined reconstruction of shape and pose of the rib cages yield reconstruction errors from 2.2 to 4.7 mm average mean 3D surface distance. Given a geometry of an individual rib cage, the rotational errors for the pose reconstruction range from 0.1 degrees to 0.9 degrees. CONCLUSIONS: The results show that our method is suitable for the estimation of pose differences of the human rib cage in binary projection images. Thus, it is able to provide crucial 3D information for registration during the generation of 2D subtraction images.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Modelos Anatômicos , Costelas/anatomia & histologia , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Intensificação de Imagem Radiográfica , Técnica de Subtração
17.
Int J Comput Assist Radiol Surg ; 4(1): 79-88, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20033605

RESUMO

PURPOSE: An important issue in computer-assisted surgery of the liver is a fast and reliable transfer of preoperative resection plans to the intraoperative situation. One problem is to match the planning data, derived from preoperative CT or MR images, with 3D ultrasound images of the liver, acquired during surgery. As the liver deforms significantly in the intraoperative situation non-rigid registration is necessary. This is a particularly challenging task because pre- and intraoperative image data stem from different modalities and ultrasound images are generally very noisy. METHODS: One way to overcome these problems is to incorporate prior knowledge into the registration process. We propose a method of combining anatomical landmark information with a fast non-parametric intensity registration approach. Mathematically, this leads to a constrained optimization problem. As distance measure we use the normalized gradient field which allows for multimodal image registration. RESULTS: A qualitative and quantitative validation on clinical liver data sets of three different patients has been performed. We used the distance of dense corresponding points on vessel center lines for quantitative validation. The combined landmark and intensity approach improves the mean and percentage of point distances above 3 mm compared to rigid and thin-plate spline registration based only on landmarks. CONCLUSION: The proposed algorithm offers the possibility to incorporate additional a priori knowledge-in terms of few landmarks-provided by a human expert into a non-rigid registration process.


Assuntos
Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/cirurgia , Cirurgia Assistida por Computador , Tomografia Computadorizada por Raios X , Algoritmos , Hepatectomia , Humanos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
18.
Artigo em Inglês | MEDLINE | ID: mdl-19964159

RESUMO

In this paper we propose a framework for fully automatic, robust and accurate segmentation of the human pelvis and proximal femur in CT data. We propose a composite statistical shape model of femur and pelvis with a flexible hip joint, for which we extend the common definition of statistical shape models as well as the common strategy for their adaptation. We do not analyze the joint flexibility statistically, but model it explicitly by rotational parameters describing the bent in a ball-and-socket joint. A leave-one-out evaluation on 50 CT volumes shows that image driven adaptation of our composite shape model robustly produces accurate segmentations of both proximal femur and pelvis. As a second contribution, we evaluate a fine grain multi-object segmentation method based on graph optimization. It relies on accurate initializations of femur and pelvis, which our composite shape model can generate. Simultaneous optimization of both femur and pelvis yields more accurate results than separate optimizations of each structure. Shape model adaptation and graph based optimization are embedded in a fully automatic framework.


Assuntos
Articulação do Quadril/anatomia & histologia , Articulação do Quadril/diagnóstico por imagem , Imageamento Tridimensional/métodos , Modelos Anatômicos , Reconhecimento Automatizado de Padrão/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Inteligência Artificial , Simulação por Computador , Modelos Estatísticos , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
IEEE Trans Med Imaging ; 28(8): 1251-65, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19211338

RESUMO

This paper presents a comparison study between 10 automatic and six interactive methods for liver segmentation from contrast-enhanced CT images. It is based on results from the "MICCAI 2007 Grand Challenge" workshop, where 16 teams evaluated their algorithms on a common database. A collection of 20 clinical images with reference segmentations was provided to train and tune algorithms in advance. Participants were also allowed to use additional proprietary training data for that purpose. All teams then had to apply their methods to 10 test datasets and submit the obtained results. Employed algorithms include statistical shape models, atlas registration, level-sets, graph-cuts and rule-based systems. All results were compared to reference segmentations five error measures that highlight different aspects of segmentation accuracy. All measures were combined according to a specific scoring system relating the obtained values to human expert variability. In general, interactive methods reached higher average scores than automatic approaches and featured a better consistency of segmentation quality. However, the best automatic methods (mainly based on statistical shape models with some additional free deformation) could compete well on the majority of test images. The study provides an insight in performance of different segmentation approaches under real-world conditions and highlights achievements and limitations of current image analysis techniques.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Fígado/anatomia & histologia , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Teorema de Bayes , Bases de Dados Factuais , Humanos
20.
Artigo em Inglês | MEDLINE | ID: mdl-20426098

RESUMO

The exact localization of the mandibular nerve with respect to the bone is important for applications in dental implantology and maxillofacial surgery. Cone beam computed tomography (CBCT), often also called digital volume tomography (DVT), is increasingly utilized in maxillofacial or dental imaging. Compared to conventional CT, however, soft tissue discrimination is worse due to a reduced dose. Thus, small structures like the alveolar nerves are even harder recognizable within the image data. We show that it is nonetheless possible to accurately reconstruct the 3D bone surface and the course of the nerve in a fully automatic fashion, with a method that is based on a combined statistical shape model of the nerve and the bone and a Dijkstra-based optimization procedure. Our method has been validated on 106 clinical datasets: the average reconstruction error for the bone is 0.5 +/- 0.1 mm, and the nerve can be detected with an average error of 1.0 +/- 0.6 mm.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Mandíbula/efeitos da radiação , Nervo Mandibular/diagnóstico por imagem , Reconhecimento Automatizado de Padrão/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Técnica de Subtração , Inteligência Artificial , Humanos , Intensificação de Imagem Radiográfica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...